Новый сенсор ускорит производство композитных деталей самолётов, лопастей ветряков

Новый сенсор ускорит производство композитных деталей самолётов, лопастей ветряков - фото 1Учёные из Сколтеха при поддержке Программы трансляционных исследований и инноваций Сколтеха разработали и запатентовали метод мониторинга процесса изготовления изделий из термореактивных полимеров. Из этих материалов сделана значительная часть деталей самолётов, кораблей, лопасти ветряков и многие составляющие автомобилей и спортивного снаряжения высокого класса

Они подолгу — порой в течение нескольких дней — запекаются в огромных печах, и новый метод мониторинга позволяет отследить момент, когда этот энергозатратный процесс можно завершать. Тем самым экономятся электроэнергия и время, а освободившуюся раньше печь можно задействовать в других задачах. Изобретение зарегистрировано Роспатентом.

Новый сенсор ускорит производство композитных деталей самолётов, лопастей ветряков - фото 2

Изделия из термореактивных полимеров запекаются в крупных печах или автоклавах, особенно если речь идёт, например, о массивных авиадеталях. Такие аппараты дорого стоят, и их эксплуатация сопряжена со значительными расходами, в том числе на электроэнергию: высокая температура поддерживается в большом объёме на протяжении долгого времени. Соответственно, производителю выгодно прекратить запекание, как только полимеризация будет завершена.

Но как понять, что полимер спёкся? Нагрев изделия осуществляется за счёт конвекционных потоков воздуха, поведение которых зависит от формы изделия и трудно поддаётся прогнозированию. Полимеризация может идти с разной скоростью в разных точках запекаемой детали. В итоге у производителя остаётся два малоприятных варианта, как действовать.

С одной стороны, можно «перебдеть» и выключить печь лишь тогда, когда уже нет сомнений, что материал полимеризован по всему объёму изделия. Очевидные минусы — перерасход электроэнергии и времени.

С другой стороны, можно использовать тот или иной метод мониторинга степени полимеризации, чтобы не пропустить момент, когда изделие готово. Взятие образцов на анализ — трудозатратный процесс, который к тому же вредит изделию и требует временного выключения печи, которую затем придётся разогревать заново. Если встроить в изделие оптоволоконные датчики, это может повлечь возникновение концентраций напряжений, и пострадают механические свойства армированного полимера. К тому же, потребуется весьма дорогостоящее оборудование. Последний недостаток в целом характерен и для акустического зондирования, и для других применяющихся сейчас подходов.

«Мы разработали дешёвый, масштабируемый и гибкий метод мониторинга степени отверждения термореактивных полимеров, — рассказывает один из обладателей патента, ведущий научный сотрудник Центра науки и технологий добычи углеводородов Сколтеха Сергей Абаимов. — Метод предполагает добавление в полимер проводящих электрический ток частиц. Ввиду ряда сложных процессов по мере запекания меняются расстояния между проводящими частицами и туннельные потенциалы. Эти изменения отражаются на общей электропроводности нанокомпозита, причём мы можем зарегистрировать этот эффект обычным мультиметром — это стандартный и недорогой электроизмерительный прибор. Мы знаем, какой отклик датчика соответствует той или иной стадии полимеризации изделия, потому что установили референсные значения в ходе экспериментов».

Исследователи называют своё изобретение встраиваемым наносенсором, но форма реализации зависит от необходимой точности и бюджета. Наиболее совершенный вариант — это сложная наноструктура, которая изготавливается осаждением из газовой фазы и встраивается в запекаемую деталь. В зависимости от запроса производителя и особенностей изделия может использоваться один такой сенсор или сразу много. Самый простой вариант — это одно из множества веществ, проводящих электрический ток, которые могут служить добавками к полимеру: оксиды металлов, углеродные нанотрубки, графен и многие другие. Такое вещество не обязательно должно иметь наноструктурированную или наноразмерную форму — например, исследователи провели успешный эксперимент с электролитическим медным порошком.

«Своего рода бонусом становится то, что наши встраиваемые наноструктуры не просто не вредят механическим свойствам изделия, а даже немного улучшают их, — прокомментировал разработку один из обладателей патента, аспирант Сколтеха Билту Махато. — Наш метод особенно актуален для крупных деталей, которые подолгу запекают в огромных печах и автоклавах. Яркий пример — составные части кораблей и особенно самолётов, в которых доля деталей из термореактивных полимеров достигает 30–50%, например у „Аэробуса-A350", российского МС-21 и „Боинга-787". Отдача от оптимизации их производства очень велика».

*****
Сколтех — негосударственный международный университет, который готовит новое поколение лидеров в области науки, технологий и бизнеса, проводит передовые исследования по приоритетным направлениям научно-технологической повестки, содействует внедрению технологий и развитию предпринимательства. В институте работают центры по направлениям искусственного интеллекта, наук о жизни и агротехнологий, современной инженерии и перспективных материалов, энергоэффективности и энергоперехода, телекоммуникаций и фотоники, перспективных исследований. Основанный в 2011 году в сотрудничестве с Массачусетским технологическим институтом, Сколтех дважды вошёл в топ-100 лучших молодых университетов мира престижного рейтинга Nature Index (2019 и 2021 год), а в 2022 году стал лучшим в России университетом в области компьютерных наук, генетики и молекулярной биологии по версии рейтинга Research.com. Сайт: https://www.skoltech.ru/.

 

Все выпуски журнала «ЭкоГрад» в электронной версии читайте на pressa.ru,

Бумажные экземпляры спецвыпусков и книги В. Климова можно приобрести на OZON

Добавить комментарий


Защитный код
Обновить